The Object Behavior of Java Object-Oriented Database Management Systems

Chia-Tien Dan Lo, Morris Chang, Ophir Frieder and David Grossman

Department of Computer Science
[llinois Institute of Technology
Chicago, IL, 60616-3793, USA

{danlo, chang, ophir, grossman} @charlie.iit.edu

Abstract
Due to its portability and popularity for Internet
applications, Java has become one of the major

programming languages. The similar syntax inherited from
the C language and the pure object orientated features,
compared to the non-pure object-oriented C++ language,
have caused Java to be a good candidate as a tool in
designing object oriented systems, especially in database
servers. However, the performance of the Java Virtual
Machine (JVM) would be the reason that several database
designers, such as Oracle, IBM, Sybase and Informix, have
not fully transferred their database management system
(DBMS) into Java. One of the performance indices is the
responsiveness for on-line transaction processing (OLTP)
which may be dominated by the garbage collection system
inside the JVM. In this paper eight Java programs, jess,
Jjavac, mtrt, compress, db, db4o, smallDB and ozone, are
used to study the dynamic memory behavior. The latter four
programs are Java object-oriented database management
systems and their object behaviors are compared to those of
the former four regular Java programs. Simulation results,
such as object size distribution, average object size, object
live distribution and total garbage collection cycle are
reported.

Index Terms— dynamic memory management, object-ori-
ented programming, Java Virtual Machine, garbage collec-
tion, Java DBMS

1. Introduction

Java’s object-oriented paradigm (OOP) is especially
good for an object-oriented database system [4, 11, 16]. A
small and really portable implementation suitable for the
Internet makes it an ideal companion to an object-oriented
database management system (OODBMS). Its Web-
enabling features have attracted several relational database
server developers such as Oracle, Sybase, IBM and Informix
to build their front-end user interfaces using various Java
approaches. However, these client/server applications may
have a crucial performance impact on the garbage collection
(GC) system. Studies have shown that allocation and
deallocation rate in a web server during peak time can be as
high as one million calls per second [12, 24]. Thus, the

Partial support for this work is provided by the National Science Foundation
through grants CCR-0098235 and CCR-0113335

popularity of Java has created the need for an analysis on
object behaviors for the aforementioned applications.

An in-depth analysis of object behaviors for Java object-
oriented database management system is presented in this
paper. Eight benchmark programs are selected in this study.
These benchmarks stand for real-world applications with a
variety of characteristics. For comparison purposes, four
non-database management system (non-DBMS) benchmarks
are chosen as a counterpart. These benchmarks are jess, mtrt,
javac and compress that are part of the SPECjvm98
benchmark [19]. db, db4o [2], smallDB [18] and ozone [17]
are the Java object-oriented database management system
(DBMS) benchmarks where db is coming from SPECjvm98
and the other three are collected from the Internet. The
benchmark descriptions are detailed in a later section.

For each benchmark, we study its object behavior by
measuring the average object size, total allocated objects,
total garbage collection cycles, object live distribution and
object size distribution. For example, to identify whether a
benchmark is GC intensive, we analyze the total garbage
collection cycles. Since every system has different GC
implementation, we also compare our results to other
reports. The objective of this study is to provide the Java
DBMS community with detailed data that allows researchers
to predict the impact of the Java GC system when applied to
a Java object-oriented database management system.

2. Related work

There are several studies on dynamic memory
management and garbage collection. One of the most
comprehensive surveys on garbage collection and dynamic
memory management algorithms was written by Paul R.
Wilson et al. [21, 22]. However, in both papers, there are no
quantitative studies of object behaviors.

In [3], Dieckmann and Hoélzle performed a thorough
study of SPECjvm98. In their paper, metrics such as object
age, size distribution, type distribution, and object alignment
overhead were reported. Although four of our benchmarks
are from SPECjvm98, most of the SPECjvm98 benchmarks
are non-DBMS. In this paper our objective is to study the
object behavior of Java DBMS programs. Moreover, in [3],

1 !Frr.

Proceedings of the International Conference on:Information Technology: Coding and Computing (ITCC’02) COMPUTER

0-7695-1506-1/02 $17.00 © 2002 IEEE www.manar SOCIETY

the definitions of metrics are different from those used in this
paper such as object live span, etc.

Calder [1] studied C and C++ programs and found that
frequency of dynamic memory allocation and deallocation in
C++ applications can be as much as ten times higher than
similar C applications. Zorn reported the object behaviors on
eight large Lisp applications by an object-level runtime
system simulator [23]. Unlike our approach (GC cycles),
Zorn used memory reference counts as a metric for object
live span. Nettles et al. introduced Oscar [HMN 97] which is
a language-independent GC testbed used to analyze object
allocation behavior by recording frequent heap snapshots.
Hicks et al. studied the execution time using Oscar to profile
SML/NIJ Java applications [7, 6]. Lo et al. studied the page
replacement performance in the garbage collection heap and
found a modified LUR (mLRU) policy is better for the GC
heap [13, 14, 15].

3. Simulation Design

The simulation design is composed of two steps:
benchmark collection and memory tracing. Finding a
suitable benchmark in Java is not easy because it is hard to
get a large software system developed in Java for the reason
that performance issues in Java have prevented developers
from using it. Moreover, compiling Java packages are not
trivial. Although Java promises programmers “write once,
run anywhere”, some Java packages coming with a user-
defined build system are hard to build. For example, the
ozone package has adopted the IBM jikes that is a Java
compiler that supports incremental builds and Makefile
generation. Additionally, it also uses a Java based build tool,
ant, from the Jakarta project [8], in that a configuration file is
coded in XML format. These third-party tools increase the
complexity when building a large Java system. For a
memory tracer, it has to have the ability to log information
pertaining to object behaviors. There are several methods
that can be applied to the memory tracer such as source code
instrumentation for a JVM and Java Virtual Machine profiler
interface (JVMPI) [10] provided by Sun JDK only. The
JVMPI approach has been adopted in our study.

3.1 Benchmark Programs

Eight Java programs, jess, javac, mtrt, jack, db, db4o [2],
smallDB [18] and ozone [17] are used to generate memory
pattern traces. The first five programs are from the
SPECjvm98 benchmark suite [19] where the benchmark
programs are designed to measure the performance of Java
Virtual Machine implementations. Several criteria such as
high byte-code content, flat execution profile (large loops),
repeatability, heap usage and allocation rate, and I-cache or
D-cache misses on the reference platform are used to test
JVMs. The latter four Java object-oriented DBMS
benchmarks are selected to compare to the former four non-

DBMS benchmarks. These DBMS benchmarks range from a
small DBMS (smallDB) to a large scale DBMS including a
single user program (db4o) and a client-server system
(ozone). The detailed descriptions of the benchmark
programs are summarized in Table 1.

Table 1 Descriptions of the Benchmark Programs (BPs)

BPs Description
Jjess |A Java expert shell system based on NASAs CLIPS expert
shell system
db |Performs multiple database functions on memory resident
database
javac [The JDK 1.0.2 Java compiler compiling 225,000 lines of
code
mitrt |A dual-threaded raytracer that works on a scene depicting a
dinosaur
com- |Compress/decompress program based on modified Lem-
press |pel-Ziv method.
ozone |ozone is a fully featured, object-oriented client/server data-
base management system completely implemented in Java
and distributed under an open source license.
db4o |db4o - database for objects - is a fast, small-footprint Java
object-oriented database management system.
smallDB |smallDB is a small OODBMS in Java. lts basic design is to
manipulate persistent objects by using Vector, Objectinput-
Stream and ObjectOutputStream classes.

3.2 Memory Tracer

The experiments are conducted on a Redhat Linux 6.2
computer by running a JVM from Sun's Java Development
Kit version 1.2.2 [9] with a tailored profiler using JVM
Profiler Interface (JVMPI) [10]. The JVMPI provides a
mechanism to monitor a program behavior executed by a
JVM without any change to the source code of the JVM.
Interesting events such as object allocation, deallocation,
object size and object type are recorded in a trace file while a
benchmark program is executed. The trace file is analyzed
by a parser that produces statistical information. Because
any JVM loads Java programs' class files (bytecode) before
execution, source code for the benchmarks is not necessary.
In fact, not all the source code for these benchmarks has
been obtained. Since this study only focuses on the object
behavior of the dynamic memory, the availability for these
class files is sufficient to gather the statistical information.

4. Simulation Results

4.1 Average Object Size, Total Allocated Objects
and Total Garbage Collection Cycles

Table 2 shows the average object size, total allocated
objects and total garbage collection cycle for the benchmark
programs. The compress benchmark has the largest average
object size (9,320.095) among all the benchmark programs.
For DBMS benchmarks, the ozone has the largest average
object size (36.2648) among the DBMS benchmarks

i !Frr.

Proceedings of the International Conference on:Information Technology: Coding and Computing (ITCC’02) COMPUTER

0-7695-1506-1/02 $17.00 © 2002 IEEE www.manar SOCIETY

possibly because it is of the client/server nature. When the
server receives a request from its client, a thread object
needs to be created to fulfill the request. These large thread
objects have contributed to increase its average object size.
On the other hand, the db (19.62974), db4o (24.1507) and
smallDB (28.9328) show insignificant difference in their
average object size compared to the non-DBMS
benchmarks.

Comparing total allocated objects, the db4o (964,701)
and smallDB (480,147) benchmarks have much fewer
objects allocated than the other benchmarks. Also, the db
benchmark shows about 50% less allocated objects than the
non-DBMS benchmarks. This shows the non-client/server
DBMS benchmarks tend to have less allocated objects.
However, the client/server DBMS benchmark, ozone, has
allocated a number of objects close to that of the jess
benchmark. The large amount of large objects required in the
client/server application results confirms the results shown
in [12] that object allocation rate can be as high as one
million per second. Note that our results are slightly different
from those reported by [3]. Different versions of JVM are
the major reason that we simulate on JDK 1.2.2 while they
use JDK 1.1.5.

As to the total garbage collection cycles, the benchmarks
with more objects allocated tend to trigger more garbage
collection cycles. For example, the jess (548 GC cycles) has
allocated 7,939,929 objects. However, the db and smallDB
have much fewer garbage collection cycles. Furthermore, the
ozone has allocated 7,783,601 objects but only 253 GC
cycles that is about 50% less than the jess. We believe that
the client/server DBMS creates objects that are collected by
the garbage collector more efficiently.

Table 2 Average object size, total allocated objects and
total garbage collection cycles

Benchmark Average Object Total Allocated Total GC
Size (Bytes) Objects Cycles

jess 27.8606 7,939,929 548

% Jjavac 24.7163 5,943,672 80
Dg mtrt 13.2805 6,644,266 54
= compress 9,320.095 11,851 28
db 19.62974 3,215,855 29

g db4o 24.1507 964,701 71
8| smalpp 28.9328 480,147 25
ozone 36.2648 7,783,601 253

Because most dead objects are collected, the heap,
therefore, has room to accommodate new allocation objects
without starting another GC cycle. On the other hand, if most
objects remain in the heap after a garbage collection cycle
that is triggered by an allocation failure, the benchmark
program tends to have more garbage collection cycles. This
leads to the analysis of the object live span which is
discussed in a later section.

4.2 Object Size Distribution

The size distribution for the benchmarks is illustrated in
Figure 1. All numbers in this paper are based on 4-byte
aligned object sizes. It is worth noting that there is an 8-byte
alignment for the object size in JDK 1.2.2. A large portion of
objects are quite small. Thus, the X-axis has been set to a
logarithmic scale. A 99.5 percentage of accumulated object
size is shown in Table 3. For example, there are 99.5% of
objects with size less or equal to 52 in the db4o benchmark.
The results indicate that there is a significant difference
between the non-DBMS benchmarks (36-276,004) and the
DBMS benchmarks (44-148). Therefore, the non-DBMS
benchmark may have a lager set of sizes (e.g., compress
(276,004 in Table 3)). This behavior is also shown in Figure
1.

4.3 Object Live Distribution

Figure 2 illustrates the object live distribution. The
results confirm the weak generational hypothesis that most
objects die young [5]. Most object live (age) studies evaluate
object live span in terms of the fraction of bytes still live
versus bytes allocated [3].

In this paper, the object live span is measured in terms of
garbage collection cycles. An object has live span 8§ if it dies
after 8 garbage cycles since created. Table 3 lists the
statistics of one-GC-cycle live objects. The non-DBMS
benchmarks show that 73.32% (javac) - 99.20% (jess) of
objects are collected within one garbage cycle. For the
DBMS benchmarks, the data show the percentages of
objects collected within one garbage collection cycle range
from 78.72% (ozone) to 99.98% (smallDB).

Moreover, 99.04% of objects have live span less than 55
in the javac benchmark; 99.02% of objects have live span
less than 177 in the ozone benchmark. The results indicate
that generational garbage collection scheme may fail in these
benchmark programs because the objects may not die young.
Furthermore, the ozone seems to have roughly 10000 objects
for each live span ranging from 2 to 134.

In general, the results show that the four Java DBMS’s
(db, ozone, db4o and smallDB) share some similarity
pertaining to the object behavior. For example, the average
object size ranges from 19.63 (db) to 36.24 (ozone).

3 !Frr.

Proceedings of the International Conference on:Information Technology: Coding and Computing (ITCC’02) COMPUTER

0-7695-1506-1/02 $17.00 © 2002 IEEE www.manar SOCIETY

Figure 1 Object Size Distribution (x-axis: object size in bytes; y-axis: number of objects)

jess

10000000
1000000
100000
10000
1000

100 1
10

1 J

S S R S S S S A SR R S SRR S VN
N N R OSBRGSO GEC P S (g

javac

10000000

1000000
100000
10000
1000
100

10

1l
L)

O > P S O P
o P P S
[V S VRN

mtrt

10000000

1000000 "
100000 -
10000 “
1000 1
100 ”
10 I
1 Nul%luHHHAHHJHHHHHHWHHlIHHHHHHﬂHWL

X R R N gx AV R D D A0 W
LR A AR VRN IR AR

o A @ P
P® & &

compress

10000

1000

100

S © A > S Y F S F

N R RO A & £ (§;\° %000
&
N

db

10000000

1000000 }

100000
10000
1000

100 |
I Il I
10
1 | A PP 71| T

™ ©) v o0
A X O)
NP @@

I R Y S S Y U SR S
SRS S IR R s
P E & S Y

©

db4o

1000000

100000

10000

1000

100

1

© O ®
& 42

X B O AV & L R P> P>
CEENIE S SN . AR S, S A

smallDB

1000000

100000

10000

1000

100

IR SARS I I i s

ozone

10000000

1000000
100000
10000
1000
100

10

b0 DRSSP TP D
EAE SR G ISR I S A &

1
>
RS

On the other hand, it ranges from 13.28 (mtrf) to
9,320.095 (compress) for the other non-Java-DBMS
benchmarks. Moreover, for the object live span, the Java
DBMS’s tend to create short lived objects; e.g., 99.98%
objects last for one GC cycle in smallDB and 93.77%
objects last for one GC cycle in db4o. However, objects
may reside in the memory long for the non-Java-DBMS
benchmarks; e.g., in compress, only 49.76% objects are
collected in one GC cycle. Furthermore, we would not be

surprised that most of the objects in Java DBMS’s have
their sizes drawn from a very small size set. For example,
94.11% of objects are drawn from the size set {4, 12, 20,
28, 44} in ozone. We believe that this has something to do
with the way that most of the Java DBMS’s store a "row"
data for a database table. The typical way is mapping a
"row" into an object. Therefore, most objects are allocated
from this small size set.

YF]',F.

4
Proceedings ofithe' International Conference on:Information Technology: Coding and Computing (ITCC’02) COMPUTER

0-7695-1506-1/02 $17.00 © 2002 IEEE

www.manar SOCIETY

Table 3 A 99.5 Percentage of Accumulated Object Size (bytes) and Statistics of One-GC-Cycle Live Objects

Non-DBMS DBMS
Benchmark
Jjess Jjavac mtrt compress db db4o smallDB ozone
99.5% Object Size 60 236 36 276,004 44 52 148 132
One-GC-Cycle Percentage 99.1987 73.3196 95.2377 94.3505 90.7873 93.7745 99.9754 78.7238
5. Conclusions and Future Work www.dbdo.com/

In this paper, we analyze the object behavior of eight
Java programs including four real-world Java object-
oriented database management systems and a counterpart
of four real-world Java programs. The results show that
the four Java DBMS’s (db, ozone, db4o and smallDB)
share some similarity pertaining to the object size, the
object live span and object size set. The object size is
similar in DBMS benchmarks, i.e., it ranges from 24.1
bytes (db40) to 49.1 bytes (ozone). On the other hand, the
object size may vary drastically. For example, it ranges
from 13.2 bytes (mtrt) to 9442.3 bytes (compress) for the
other non-Java-DBMS benchmarks.

Moreover, for the object live span, the Java DBMS’s
tend to create short lived objects; e.g., 88.76% objects last
for one GC cycle in smallDB and 93.21% objects last for
one GC cycle in db40. However, objects may reside in the
memory long for the non-Java-DBMS benchmarks; e.g.,
in compress, only 49.76% objects are collected in one GC
cycle. Most of the objects in Java DBMS’s have their sizes
drawn from a very small size set. For example, 94.11% are
drawn from the size set {4, 12, 20, 28, 44} in ozone. We
believe this has something to do with the way that most of
the Java DBMS’s store a "row" data for a database table.
The typical way is mapping a "row" into an object.
Therefore, most objects are allocated from this small size
set.

When migrating a database management system from
a relational model to an object-oriented model, the first
issue is how to map the relational model to the object-
oriented model nicely for the reason that these two models
have their intrinsic conflict. Performance issues such as
indexing subsystem, concurrency control, recovery
mechanisms and persistent object alignment remain to be
studied and thus become the future work.

6. References

[1] Calder, B., Grunwald, D. and Zorn, B., 1994. Quantifying
behavioral differences between C and C++ programs, Tech-
nical Report CU-CS-698-94, Computer Science Department,
University of Colorado.

[2] db4o Java database management system, 2001. http://

[3] Dieckmann, S. and Holzle, U., 1999. A Study of the Alloca-
tion Behavior of the SPECjvm98 Java Benchmarks. In:
Proceedings of the European Conference on Object-Ori-
ented Programming (ECOOP'99), Lecture Notes on
Computer Science, Springer Verlag, Lisbon, Portugal.

[4] Ege, Raimund K., 1999. Object-Oriented Database Access
via Reflection. In: Proceedings of the Twenty-Third Annual
International Computer Software and Applications Confer-
ence., pp. 36-41.

[5] B, Hayes. Using key object opportunism to collet old objects.
In Proceedings of OOPSAL’91 Conference on Object-Ori-
ented Systems, Languages and Applications, ACM
SIGPLAN Notices 26(11), Phoenix, Arizona, October 1991.
ACM Press, Pages 33-46.

[6] M. Hicks, L. Hornof, J. Moore, and S. Nettles. A study of
Large Object Spaces. In Proceedings of the First Interna-
tional Symposium on Memory Management, Vancouver,
October 1998, ACM Press, Page 138-145

[7] M. Hicks, J. Moore, and S. Nettles. The measured cost of
copying garbage collection mechanisms. In Proceedings of
International Conference on Functional Programming,
Amsterdam, June 1997

[8] Ant, the Jakarta project,
index.html

[9] JDK 1.2.2,2001. JDK 1.2.2, released by Sun Microsystems,
http://www.javasoft.com.

[10] Sun JVMPI Documentation, 2001. http://www.cs.south-
ern.edu/~javadocs/guide/jvmpi/jvmpi.html

[11] King, Nelson, 1998. Java in the database Server. DBMS,
June 1998, http://www.dbmsmag.com/9806d13.html

[12] Larson, P.A. and Krishnan, M., 1998. Memory Allocation
for Long-Running Server Applications. In: Proc. 1998 Int’1
Symposium on Memory Management, pp. 176-185.

[13] C. D. Lo, W. Srisa-an and J. M. Chang, "Performance Anal-
ysis on the Generalized Buddy System," In IEE Proceedings,
Computers and Digital Techniques, Vol. 148, No. 4/5, July/
September 2001, pp. 167-175

[14] C.D. Lo, W. Srisa-an, J. M. Chang, "Page Replacement Per-
formance in Garbage Collection Systems," to appear in the

Proceedings of 13th International Conference on Parallel and
Distributed Computing Systems, Las Vegas, Nevada,
August 8-10, 2000. pp.374-379.

[15] C. D. Lo, W. Srisa-an and J. M. Chang, "A Study of Page
Replacement Performance in Garbage Collection Heap,"
The Journal of Systems and Software, vol. 58, 2001, pp.
235-245

http://jakarta.apache.org/ant/

Proceedings ofithe' International Conference on:Information Technology: Coding and Computing (ITCC’02)

0-7695-1506-1/02 $17.00 © 2002 IEEE

YF]',F.

COMPUTER

www.manar

SOCIETY

Figure 2 Object Live Distribution (x-axis: garbage collection cycle count; y-axis: number of objects)

jess

10000000

1000000

100000
10000 -

1000

100
10
1
I I I I S L S SIS

S
%

javac

10000000
1000000 o
100000 H
10000 -

1000
100

10

1

mtrt

10000000

1000000 -
100000 o

10000 -
1000 o
100 1

T NS S S NN - B S ¥

compress

10000

1000 -

100

N | HHHHHHHHHUUHHHH\

N 9 A 2 X ®» v Q

db

10000000
1000000 -

100000
10000 -

1000

I

N e A XN 0 e R PP R

db4o

1000000 —

100000 o

10000

1000 4
100

10 4

1 2 3 4 5 6 14 15 16 50 51 52 53

smallDB

1000000

100000 +

10000

1000 4+

100 A

17 HI:IDI:I : ‘I:I‘I:I‘D‘D

1 2 8 10 12 14 15 16

ozone

10000000
1000000
100000

10000
1000

100
10

1

© > A R ® PN
IR N GG ST SS,

N R R @

[[16] North, Ken, 1999. Java in the Database. Javapro, March
1999, http://www.devx.com/upload/free/features/javapro/
1999/03mar99/kn0399/kn0399.asp

[17] ozone, An open source Java ODBMS, http://www.ozone-
db.org/

[18] A free OODBMS in Java, 2001. http://www lifl.fr/~carono/
smallDB/

[19] SPECjvm98, 1998. Standard Performance Evaluation Cor-
poration. SPECjvm98 Documentation, Release 1.0. August
1998. Online version at http://www.spec.org/osg/jvm98/
jvm98/doc/index.html.

[21] Wilson, Paul R., 1992. Uniprocessor Garbage Collection
Techniques. In Proc. of International Workshop on Memory

Management, 1992

[22] Wilson, P., Johnstone, M., Neely M. and Boles, D., 1995.
Dynamic Storage Allocation: A Survey and Critical Review.
In: Proc. 1995 Int’l workshop on Memory Management,
Scotland, UK, Sept. 27-29.

[23] Zorn, B., 1989. Comparative Performance Evaluation of
Garbage Collection Algorithms. Ph.D. thesis, University of
California at Berkeley, March 1989.

[24] B. Willard and O. Frieder, "Autonomous Garbage Collec-
tion: Resolving Memory Leaks in Long-Running Server
Applications," Computer Communications, 23 (2000) 887-
900.

YF]',F.

6
Proceedings ofithe' International Conference on:Information Technology: Coding and Computing (ITCC’02) COMPUTER

0-7695-1506-1/02 $17.00 © 2002 IEEE

www.manar SOCIETY

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

